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Synthesis of Monocrotaline by Nucleophilic
Macrolactonization

Summary: Monocrotaline (2) has been prepared by a
sequence involving the coupling of 10 with 6, followed by
nucleophilic ring closure. The cyclization step involes
mesylate displacement by carboxylate ion, generated in
situ via the desilylation of a 8-(trimethylsilyl)ethyl ester
3.

Sir: Macrocyclic dilactone pyrrolizidine alkaloids derived
from retronecine (1) are remarkable for their potent he-
patotoxic and antitumor activity and for their role as de-
fensive agents and pheremone precursors in Danaid but-
terflies.! Syntheses of some of the simpler dilactones are
known,? but the important 11-membered derivative mon-
ocrotaline (2) poses special problems (Chart I). In par-
ticular, its tendency for v-lactone formation complicates
possible synthetic strategies.?

Previous work on the fulvine—crispatine series suggested
that fluoride-induced cyclization of mesylate 3 to dilactone
acetal 4 should be possible.?2 This procedure is well-suited
for complex pyrrolizidine dilactones because it avoids the
risks of internal cyclization associated with electrophilic
carboxyl activation methods. To confirm that acetal 4
could be deprotected, monocrotaline (2) was converted into
4 (methylal/P,0;/CHCl;, room temperature, 98% )* and
4 was subjected to acid hydrolysis. Although some deg-
radation proved unavoidable, a 75% yield of monocrotaline
could be obtained at 50% conversion by treatment of 4
with 38% HCI + ethylene glycol (110 °C, 2 h). The syn-
thetic problem therefore depends on the preparation of
3 and its conversion into 4.

Two routes to 3 have been devised, both of which involve
the protected glutaric anhydride derivative 5. In the first
route, 4 derived from natural retronecine was saponified
(LiOH, 35 °C; quantitative) and the resulting diacid was
cyclized to optically pure 5 by using dicyclohexylcarbo-
diimide (THF, room temperature, quantitative). A second
route (Scheme I) involved a series of conventional steps
from 2,3,4-trimethylcyclopent-2-enone® and produced d,I-5.
In either case, treatment of 5 with 2-(trimethylsilyl)ethanol
(pyridine/ THF, 40 °C, 17 h) occurred with interesting
selectivity to give 6 and 7 in a 6:1 ratio, 95%. These
structures were established by conversion of 6 into 8
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(NaBH, + BF;, 85%; 'H NMR, OCH,CH at 4 4.45, 3.95,
Jap = 11.0 Hz, J,x = 3.5 Hz, Jpx = 6.0 Hz) and 7 into 9
(86%; 'H NMR, OCH, at § 4.20, 4.15, J,5 = 11.0 Hz).

Selective anhydride cleavage at the more highly sub-
stituted carbonyl group has been attributed to the ap-
proach trajectory in other systems.! However, the dom-
inant factor in the case of 5 is probably the electronic effect
of an alkoxy group « to carbonyl. Attack from the exo side
(relative to the bicyclic subunit) could thus benefit from
the anti alkoxy orientation which is invoked in Felkin—Anh
transition states.’
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The optically active monoester 6 was coupled in 65%
yield by using the mixed phosphoric anhydride method
(1 equiv of n-BuLi, THF, -78 °C; (Et0),POCI to room
temperature) with optically pure 10, obtained from 1 by
treatment with ¢-BuMe,SiCl (TBSCI) followed by n-bu-
tyllithium (Scheme II). The resulting diester 11 was
deprotected with 5% aqueous HF in THF to give 12
(96%). This material was converted into the mesylate 3
(MsCl/Et;N/CH,Cl,) and crude 3 was added over 3 h to
excess BuN*F~3H,0 in acetonitrile at 34 °C to effect ring
closure to the monocrotaline acetal 4 (71% yield).

The possibility of using d,I-6 in the coupling with 10 was
explored briefly. Thus, d,/-6 was converted into the mixed
phosphoric anhydride as before and then treated with a
deficiency of optically pure 10. Although a modest 2:1
enantiomer differentiation in favor of the natural isomer
11 was observed, this procedure did not utilize the pre-
cursor 6 efficiently. Further experiments with 11 derived
from d,l-7 were restricted to demonstrating that this ma-
terial could be cyclized to the d,l dilactone 4 via the de-
silylation of 3.

Deprotection of 4 as described earlier affords 2. Coupled
with recent efforts in the synthesis of (£)- or (+)-retro-
necine,? this study completes the total synthesis of mon-
ocrotaline. Furthermore, the sequence confirms the gen-
erality of the nucleophilic cyclization method for synthesis
of retronecine-derived dilactones. As in our earlier report,?
the 2-(trimethylsilyl)ethyl ester is converted in situ to a
tetrabutylammonium carboxylate under dilution condi-
tions which favor intramolecular displacement of mesylate.
Attempts to extend this cyclization method to a relatively
simple macrolide have not been promising,® but the pro-
cedure is remarkably effective in the case of pyrrolizidine
alkaloids. There are now four successful examples of cy-
clization to 11-membered retronecine dilactones,? as well
as a recent extension to a 12-membered analogue.?
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Kinetic and Product Hydrogen-Deuterium Isotope
Effects in Ene Reactions: A Model for
Understanding Apparently Anomalous Effects

Summary: Cases in which a concerted and a stepwise ene
reaction show an apparently anomalous change in a
product hydrogen—deuterium isotope effect with electro-
philic activation of the eneophile are reported and shown
to be consistent with a kinetic scheme in which a reaction
intermediate can partition between the steps of reversal,
equilibration of geometrically defined species, and con-
version to product.

Sir: Comparisons of kinetic and product hydrogen—-deu-
terium isotope effects have been a powerful tool for making
choices between concerted and stepwise mechanisms of a
number of formal ene reactions.!? Equal kinetic and
product isotope effects in inter- and intramolecular com-
petitions usually are taken as evidence for concert in a
single bond-making and bond-breaking step, although
Orfanopoulous, Foote, and Smonou recently have made
a qualitative suggestion that low isotope effects may be
interpreted in terms of partially equilibrating reaction
intermediates.®® Unequal kinetic and product isotope
effects usually are taken to establish the presence of a
reaction intermediate.?” In this paper we report apparent
anomalies in product isotope effects accompanying acti-
vation of the eneophile in both concerted and stepwise
mechanisms of the ene reaction. We provide a framework
for the interpretation of kinetic and product isotope effects
and illustrate how such isotope effects can be quantita-
tively interpreted in terms of partitioning of a reaction
intermediate.

The isotope effects for the thermal and catalyzed ene
reactions of methylenecyclochexane (1), 2,2-dideuterio-
methylenecyclohexane (1-d,), and 2,2,6,6-tetradeuterio-
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